Quantcast
Channel: Soluciones acertijos – MatematicasCercanas
Viewing all articles
Browse latest Browse all 72

Solución a… Los apretones de manos

$
0
0

El acertijo de los apretones de manos dice así:

“En una reunión, todos los asistentes se dieron la mano con todos los demás. Hubo 66 apretones de manos. ¿Cuántas personas estaban en la reunión?”

acertijoapretones

Vamos a ver la SOLUCIÓN.

¡Espera!

Si aún no lo habías visto y no has intentado resolverlo, te invito a que lo hagas antes de seguir leyendo.

¿Quieres ver la solución ya?

Continúa entonces…

Con dos personas (A y B), se produce un apretón de manos (A con B).

Con tres personas (A, B y C), se producen tres apretones de manos (A con B y C, B con C).

Con cuatro personas (A, B, C y D), hay seis apretones de manos (A con B, C y D, B con C y D, C con D).

En general, con n +1 personas, el número de apretones de manos es la suma de los primeros n números naturales consecutivos:

1 +2 +3 + … + n

Dicha expresión es la de la suma de los términos de una progresión aritmética de diferencia 1,y viene dada por:

n (1 +n) / 2

Así que, tenemos que resolver la ecuación:

n (1 +n) / 2 = 66

que es una ecuación de segundo grado que podemos expresar como:

n 2 + n – 132 = 0

Resolviendo dicha ecuación obtenemos como solución válida n=11 , y de dicho resultado se deduce que había 12 personas en la reunión.

Si recurrimos a la combinatoria, nuestro problema se trata de combinaciones de n elementos tomados de dos en dos (sin repetición), cuya expresión es la siguiente:

Luego, en nuestro caso tenemos que:

Simplificando los factoriales nos queda:

Y, simplificando aún más, obtenemos la siguiente ecuación de segundo grado:

n2 – n – 132 = 0

De donde se obtiene como solución válida al problema  n=12, es decir, había 12 personas en la reunión.

 Pero…

… hay una tercera forma de plantear este problema de los apretones de manos que me gusta personalmente, y es recurriendo a la geometría.

Podemos considerar a cada persona de la reunión como un vértice de un polígono cualquiera, de manera que tendríamos un polígono de n vértices y, por tanto, también de n lados.

Planteado así, un apretón de manos entre dos personas sería la línea que une los vértices que representan a esas dos personas.

De esta manera, el número total de apretones de manos será la suma de las diagonales y lados de dicho polígono.

Como en un polígono de n lados, el número de diagonales viene dado por la expresión:

apretones01

El número total de apretones será:

apretones02

Igualando ahora a 66 (el número total de apretones de manos que nos dicen que ha habido en la reunión)…

apretones03

Y simplificando obtenemos la ecuación de segundo grado que vimos antes al resolver el problema utilizando la combinatoria:

n2 – n – 132 = 0

Cuya solución válida era n=12, es decir, en la reunión estaban 12 personas.

Como comprobación, si dibujáis ahora un polígono de 12 vértices (12 lados) y trazáis todas sus diagonales posibles, observaréis que junto con sus 12 lados suman en total 66.

La entrada Solución a… Los apretones de manos aparece primero en matematicascercanas.


Viewing all articles
Browse latest Browse all 72

Trending Articles